The European Commission's science and knowledge service

Joint Research Centre

Prof.Dr. Ad de Roo

• Securing resilience of global food and energy systems builds on fairness of water allocation strategies

 Overcome stakeholders' view of resources as individual assets

JRC WEFE-Nexus: Managing sectoral interdependencies in a cross-border context

European Commission

4 JRC reports as a basis

JRC TECHNICAL REPORTS

Impact of a changing climate, land use, and water usage on Europe's water resources

> A model simulation study

Bernard Bisselink, Jeroen Bernhard, Emiliano Gelati, Marko Adamovic, Susann Guenther, Lorenzo Mentaschi, Ad de Roo

JRC TECHNICAL REPORT

Climate change and Europe's water resources

JRC PESETA IV project - Task 10

Bisselink B., Bernhard J., Gelati E., Adamovic M., Guenther S., Mentaschi L., Feyen L., and de Roo, A.

2020

European Commission

LISFLOOD: water resources, floods, droughts and nexus simulation model

Average river discharge (LISFLOOD simulations 1990-2018)

5km Europe

- EFAS floods
- EDO droughts
- EU: Nexus,BLUE2, PESETA
- 0.1° Global
 - GloFAS floods
 - E20 Tier1&2
- 0.083° Africa
 - JRC nexus studies
- 0.5° Global
 - HELIX

- A **North-South pattern** emerges across Europe for water availability under a 2°C warming scenario. Overall, Southern European countries are projected to face increased water shortages, particularly Spain, Greece, Cyprus, Italy and Turkey.
- The number of **people affected by water scarcity** defined here as an annual WEI+ >0.1 may increase from **70.7 million** under current climate to **79.8 million** under a 3 degree climate change // The number of people affected by **severe water scarcity** annual WEI+ >0.3 in the Mediterranean is projected to **increase from 24.4 million to 34.4** million people under a 3 degree climate change.
- The severity of impacts under the 2°C warming scenario suggests that **mitigation** alone is not enough to avoid adverse climate change impacts; adaptation strategies such as water savings and efficiency measures will be needed too.
- The **energy** / emission ambitions have a double advantage: reducing emissions allows reaching the 1.5C scenario, but **also reduces cooling water requirements**
- The Member States' **ambitions** with water efficiency measures in the WFD is especially in the Mediterranean area likely **not sufficient** to compensate the increased water scarcity as a consequence of climate change.
- Groundwater depletion seems an underrated problem. Already an issue now, it will get worse under any climate scenario. A mindset change in agriculture and CAP subsidies might be needed in Southern Europe. Deficit irrigation, shifting crop types, water re-use, aquifer recharge, desalination with

European Commission

5 renewables, all seem viable options.

Changes in local runoff: 2deg vs hist

- A North-South pattern emerges across Europe for water availability under a 2°C warming scenario. Overall, Southern European countries are projected to face increased water shortages, particularly Spain, Greece, Cyprus, Italy and Turkey.
- The number of **people affected by water scarcity** defined here as an annual WEI+ >0.1 may increase from **70.7 million** under current climate to **79.8 million** under a 3 degree climate change // The number of people affected by **severe water scarcity** annual WEI+ >0.3 in the Mediterranean is projected to **increase from 24.4 million to 34.4** million people under a 3 degree climate change.
- The severity of impacts under the 2°C warming scenario suggests that mitigation
 alone is not enough to avoid adverse climate change impacts; adaptation strategies
 such as water savings and efficiency measures will be needed too.
- The **energy** / emission ambitions have a double advantage: reducing emissions allows reaching the 1.5C scenario, but **also reduces cooling water requirements**
- The Member States' **ambitions** with water efficiency measures in the WFD is especially in the Mediterranean area likely **not sufficient** to compensate the increased water scarcity as a consequence of climate change.
- Groundwater depletion seems an underrated problem. Already an issue now, it will get worse under any climate scenario. A mindset change in agriculture and CAP subsidies might be needed in Southern Europe. Deficit irrigation, shifting crop types, water re-use, aquifer recharge, desalination with

European Commission

7 renewables, all seem viable options.

Water Exploitation Index (WEI+) (consumption): 1990-2016

LISFLOOD reference run forced with observed meteo data (JRC-EFAS)

Water Exploitation Index (WEI+) (consumption): 2degree climate

ensemble of 11 Euro-Cordex scenarios run with LISFLOOD

Same regions affected, but WEI+ gets worse

Water Exploitation Index (WEI+) (consumption): rcp85 climate 2070-2099

ensemble of 11 Euro-Cordex scenarios run with LISFLOOD

More regions affected, WEI+ gets >> worse

1.5℃

baseline

200

3℃

European Commission

- A North-South pattern emerges across Europe for water availability under a 2°C warming scenario. Overall, Southern European countries are projected to face increased water shortages, particularly Spain, Greece, Cyprus, Italy and Turkey.
- The number of **people affected by water scarcity** defined here as an annual WEI+ >0.1 may increase from **70.7 million** under current climate to **79.8 million** under a 3 degree climate change // The number of people affected by **severe water scarcity** annual WEI+ >0.3 in the Mediterranean is projected to **increase from 24.4 million to 34.4** million people under a 3 degree climate change.
- The severity of impacts under the 2°C warming scenario suggests that **mitigation** alone is not enough to avoid adverse climate change impacts; adaptation strategies such as water savings and efficiency measures will be needed too.
- The **energy** / emission ambitions have a double advantage: reducing emissions allows reaching the 1.5C scenario, but **also reduces cooling water requirements**
- The Member States' **ambitions** with water efficiency measures in the WFD is especially in the Mediterranean area likely **not sufficient** to compensate the increased water scarcity as a consequence of climate change.
- Groundwater depletion seems an underrated problem. Already an issue now, it will get worse under any climate scenario. A mindset change in agriculture and CAP subsidies might be needed in Southern Europe. Deficit irrigation, shifting crop types, water re-use, aquifer recharge, desalination with

European Commission

12 renewables, all seem viable options.

Change of water resources (RCP4.5), months 5-8

- A North-South pattern emerges across Europe for water availability under a 2°C warming scenario. Overall, Southern European countries are projected to face increased water shortages, particularly Spain, Greece, Cyprus, Italy and Turkey.
- The number of **people affected by water scarcity** defined here as an annual WEI+ >0.1 may increase from **70.7 million** under current climate to **79.8 million** under a 3 degree climate change // The number of people affected by **severe water scarcity** annual WEI+ >0.3 in the Mediterranean is projected to **increase from 24.4 million to 34.4** million people under a 3 degree climate change.
- The severity of impacts under the 2°C warming scenario suggests that **mitigation** alone is not enough to avoid adverse climate change impacts; adaptation strategies such as water savings and efficiency measures will be needed too.
- The **energy** / emission ambitions have a double advantage: reducing emissions allows reaching the 1.5C scenario, but **also reduces cooling water requirements (and it helps to have more water available for hydropower in the Mediterranean)**
- The Member States' ambitions with water efficiency measures in the WFD is –
 especially in the Mediterranean area likely not sufficient to compensate the increased
 water scarcity as a consequence of climate change.
- Groundwater depletion seems an underrated problem. Already an issue now, it will get worse under any climate scenario. A mindset change in agriculture and CAP subsidies might be needed in Southern Europe. Deficit irrigation, shifting crop

European Commission

- 14 types, water re-use, aquifer recharge, desalination with
- renewables, all seem viable options.

Due to the decarbonisation of the energy system, freshwater needs in Mediterranean EU MS are expected to decrease significantly in all scenarios but will remain high nevertheless in 2050

Water withdrawal for primary energy production, power generation (cooling), and refining for different energy scenarios in Mediterranean EU MS (PT, ES, FR, IT, MT, HR, EL and CY)

-60%

-30%

Source: JRC 2019, provisional results

Expected long-term impacts

Cooling of thermal power plants and hydropower generation are already vulnerable to droughts, high water temperatures, and changes in seasonal patterns

By 2050 climate change is expected to increase the frequency, the intensity, and the costs of these events across the EU, especially in already water-stressed areas around the Mediterranean

Overall water stress index vs. power system water withdrawals

Source: JRC115853, 2019

Figure 46 Changes of average annual inflow (Qavg) at hydropower stations in 6 European regions for the RCP8.5 2070-2099 climate change as compared to current climate 1981-2010: ensemble of 11 Euro-Cordex models run with the LISFLOOD model.

Figure 45 Changes of average annual inflow (Qavg) at hydropower stations in 6 European regions for the 2 degree climate change as compared to current climate 1981-2010: ensemble of 11 Euro-Cordex models run with the LISFLOOD model.

- A **North-South pattern** emerges across Europe for water availability under a 2°C warming scenario. Overall, Southern European countries are projected to face increased water shortages, particularly Spain, Greece, Cyprus, Italy and Turkey.
- The number of **people affected by water scarcity** defined here as an annual WEI+ >0.1 - may increase from **70.7 million** under current climate to **79.8 million** under a 3 degree climate change // The number of people affected by severe water scarcity annual WEI+ > 0.3 - in the Mediterranean is projected to increase from 24.4 million to 34.4 million people under a 3 degree climate change.
- The severity of impacts under the 2°C warming scenario suggests that **mitigation** alone is not enough to avoid adverse climate change impacts; adaptation strategies such as water savings and efficiency measures will be needed too.
- The **energy** / emission ambitions have a double advantage: reducing emissions allows reaching the 1.5C scenario, but also reduces cooling water requirements
- The Member States' **ambitions** with water efficiency measures in the WFD is especially in the Mediterranean area - likely not sufficient to compensate the increased water scarcity as a consequence of climate change.
- **Groundwater depletion** seems an underrated problem. Already an issue now, it will get worse under any climate scenario. A mindset change in agriculture and CAP subsidies might be needed in Southern Europe. Deficit irrigation, shifting crop types, water re-use, aquifer recharge, desalination with European

Commission

Projected impacts of combined measures on water resources

Change of Water Exploitation Index (WEI+) under 4 planned measures, under current climate

Change of Water Exploitation Index (WEI+) under 4 planned measures, under 2 degree climate

- A **North-South pattern** emerges across Europe for water availability under a 2°C warming scenario. Overall, Southern European countries are projected to face increased water shortages, particularly Spain, Greece, Cyprus, Italy and Turkey.
- The number of **people affected by water scarcity** defined here as an annual WEI+ >0.1 - may increase from **70.7 million** under current climate to **79.8 million** under a 3 degree climate change // The number of people affected by severe water scarcity annual WEI+ > 0.3 - in the Mediterranean is projected to increase from 24.4 million to 34.4 million people under a 3 degree climate change.
- The severity of impacts under the 2°C warming scenario suggests that **mitigation** alone is not enough to avoid adverse climate change impacts; adaptation strategies such as water savings and efficiency measures will be needed too.
- The **energy** / emission ambitions have a double advantage: reducing emissions allows reaching the 1.5C scenario, but also reduces cooling water requirements
- The Member States' **ambitions** with water efficiency measures in the WFD is especially in the Mediterranean area - likely **not sufficient** to compensate the increased water scarcity as a consequence of climate change.
- **Groundwater depletion** seems an underrated problem. Already an issue now, it will get worse under any climate scenario. A mindset change in agriculture and CAP subsidies might be needed in Southern Europe. Deficit irrigation, shifting crop types, water re-use, aquifer recharge, desalination with 25 renewables, all seem viable options. European

Commission

Groundwater depletion (simulated)

Groundwater depletion (% of recharge)

European

Commission

Severe depletion (>50% of recharge) due to irrigation abstractions across the Mediterranean 26

- A **North-South pattern** emerges across Europe for water availability under a 2°C warming scenario. Overall, Southern European countries are projected to face increased water shortages, particularly Spain, Greece, Cyprus, Italy and Turkey.
- The number of **people affected by water scarcity** defined here as an annual WEI+ >0.1 may increase from **70.7 million** under current climate to **79.8 million** under a 3 degree climate change // The number of people affected by **severe water scarcity** annual WEI+ >0.3 in the Mediterranean is projected to **increase from 24.4 million to 34.4** million people under a 3 degree climate change.
- The severity of impacts under the 2°C warming scenario suggests that **mitigation** alone is not enough to avoid adverse climate change impacts; adaptation strategies such as water savings and efficiency measures will be needed too.
- The **energy** / emission ambitions have a double advantage: reducing emissions allows reaching the 1.5C scenario, but **also reduces cooling water requirements**
- The Member States' **ambitions** with water efficiency measures in the WFD is especially in the Mediterranean area likely **not sufficient** to compensate the increased water scarcity as a consequence of climate change.
- **Groundwater depletion** seems an underrated problem. Already an issue now, it will get worse under any climate scenario.
- A mindset change in agriculture and CAP subsidies might be needed in Southern Europe. Deficit irrigation, shifting crop types, water re-use, aquifer
- recharge, desalination with renewables, all seem viable options.